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TRANSMISSION OF CONCENTRATED FORCES
INTO PRISMATIC SHELLS-II
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Abstract-The paper treats the remaining two cases of an unbounded prismatic shell subjected to concentrated
forces at the ridge. When the load is perpendicular to the plane of symmetry of the shell, the membrane forces
remain bounded, while the moments and transverse shearing forces are singular at the load point In contrast,
the membrane forces dominate the far field. When the concentrated force is applied in the direction of the ridge,
the membrane and transverse shearing forces are singular and both are of the same order at the point of loading.
The far field for this case again is dominated by the membrane forces.

INTRODUCTION

THE formulation of an unbounded prismatic shell subjected to concentrated forces at the
ridge and the specific loading by a force which lies in the plane of symmetry and is
perpendicular to the ridge were discussed in a previous paper [12]. The present article
treats the remaining two cases when the force is either perpendicular to the plane of sym
metry or is applied along the ridge,

CASE II-ANTISYMMETRIC LOAD PERPENDICULAR TO RIDGE

If the concentrated force P2 applied at the ridge is perpendicular to the plane of sym
metry of the shell, as shown in Fig. 1, the deformations are antisymmetric with respect to
this plane, and

U~l)(Xl'Yl)= -U~2)(X2'Y2) ux(x,y),

u;t)(x 1 , yd = -U;2)(X2' Y2) = uix,y),

w(l)(x1 , Yl) = w(Z)(xz, Yz) w(x, y),

Substitution of (53) into the boundary conditions (6H13) finds four equations satisfied
identically, while the remaining relations become

U x cos (J. +w sin (J. = 0,

uy = 0,

Mxx = 0,

N xx sin ct - Vx cos (J. = - tP2 !5(y).

The field quantities satisfying the differential equations (3) and (5) and the boundary
conditions (54) can be constructed in the same manner as for Case I. The Papkovich-
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(0) (b)

FIG. 1. Unbounded prismatic shell, loads and coordinate systems.

Neuber displacement potentials and the bending deflection constituting the desired
solution are

<jJ(X, y) =
P2(l + v)
4 h' [logr+Cj(x,y;a)],

n sm a
(55)

where

t/!(X, y) = 0, (56)

Pz{3-v) cos a . 2
w(x,y)= 6 Gh' 2 [2Iogr+2C j (x,y;a)-(l-v)axCo(x,y;a)], (57)

1 n SIll lI.

2 48 tan 2 a
a = 9 2'-v

(0 < a < n/2). (58)

The extensional displacements and membrane forces derived from (55) and (56) are

P2 2
h' [(3 -v)(log r+ C d-(l +v)a xCo],

4n sm a

N xx =

N yy =

N XY =

P a2

4 h
2

. [2Co+(l + v)xC IJ,
n sm a

P a2

z. [(l-v)So+(l+v)xSjJ,
4nh sm a

P a2

z. [2vCo-(1+v)xC jJ.
4nh sm a

The Airy stress function corresponding to the membrane forces (60) is

Pzh
X= . [(l-v)xlogr-2y6l-2Co-(I+v)xC j J.

4nsma

(59)

(60)

(61 )
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Finally, the moments and transverse shearing forces follow from (57) as

Pil-v) (X
2

2 C )M - --a x
xx - 2n(3 + v) cos IX r2 0 ,

M xy = P2 [(1_V)(x; -a2xs o ) +(1 +V)Sl],
2n(3 + v) cos r:t r

P2
[ (x

2

2) ]M yy = 2n(3+v)coslX (I-v) -;:r-a xCo +2(I+v)C 1 ;

P2 (x 2 )- --a C
Qx - n(3 + v)h cos IX r2 0 ,

Q _ P2 (L_ a 2 S )
y - n(3 + v)h cos IX r2 0 .

27\

(62)

(63)

THE NEAR AND FAR FIELDS FOR CASE II

The stress resultants ofthe near and far fields are derived by substituting the asymptotic
forms of the auxiliary functions (2I)t and (25) into (60), (62) and (63). Thus the following
results are obtained for the near field:

1 0 P2a
N~x = -Nyy 4h' +O(r log r),

v sm IX

N~y = OCr log r),

o P2(l-v) x 2

M xx = 2 (3) '2+ 0 (r),n +v cos IX r

P2 [xy ]2 (3) (l-v)z+(l+v)O +O(r),
n + v cos rx r

o _ P2(1 + v) .
M yy - (3) log r+ 0(1),

n +v cos ex.

QO= P2 .~+O(I)
x n(3 + v)h cos rx r 2 '

° P2 y
Qy = (3)h ' 2"+ OCr log r).

n +v cos rx r

(64)

(65)

(66)

(67)

The dominant parts of the moments and transverse shearing forces near the load point
are the same as the stress resultants derived from the elementary deflection function

P2 [ 2 I + V2 . I 2Jr logr---r (logrcos28-8sm28)+--r .
4n(3+v)Dcosrx I-v I+v

t The more explicit asymptotic forms of the auxiliary functions for r ---> 0 may be noted

Co(x,y) = n/2a+xlogr+0(r),

So(x, y) = - y log r +O(r),

C,(x, y) = -logr+O(l),

S,(x,y) = 8+0(r).
(68)



272 M. G. SAMUCHIN and J. DUNDURS

(69)

Apart from the multiplier l/cos a, WO given by (67) is identical to the deflection function of
a semi-infinite plate loaded in bending by a concentrated force, which is applied at the
edge of the plate [13].

The membrane forces in the far field are

N~x = -4~£~n a[(l-V)~~ +2(1 +V)::J -t O(r 3),

N oo Pz [(1 )Y 2( XZYJ (-3xv = - 4 h . - v 2 + 1+v)~ +0 r ),. n SIll IX r r

00 Pz [ X X
3J -3N yy = -4ri71'sinIX (1+3v)r2-2(1+v)-;A +O(r ).

The Airy stress function which gives the dominant parts of the membrane forces in the
far field is

Pzhin = . [(1-v)xlogr-2yO].
4n SIll IX

(70)

It may be noted that the Airy stress function XOC
, is proportional to that of the infinitely

extended plate which is loaded by an in-plane concentrated force. The bending stress
resultants in the far field follow as

Pz(1 - v) (X2 X4) 4
M~ - 2 34 -4'6 +O(r- ),

na (3 + v) cos IX r r

2Pz [ xv X
3yJ 4

M~y - 1'-=-+2(1-1')- +O(r- ), (71)
na 2(3 + v) cos IX r4 r6

M;;' P2 ._[(1 +v)~+(1 SV)x
z
-4(1-v)x

4J+0(r- 4
);

naZ(3 + v) cos IX rZ r4 r6

Qoo _ _ 2Pz (3~_4X3) +O(r-S)
x - naZ(3+v)hcosa r4 r6 '

(72)

Qoo = _ 2Pz (Z_4
X2y

) +O(r-S).
y naZ(3 + v)h cos IX r4 r6

The dominant parts of the bending stress resultants given by (71) and (72) can be derived
from the elementary deflection function

Pz(3 - v)hz cos a I
WOO =48 (1 ) . z [logr- 4{l-v)cos20]. (73)

n -v DSIll IX

DISCUSSION OF RESULTS FOR CASE II

The asymptotic forms of the near field indicate the same behavior as for Case I, in that
the membrane forces are bounded at the point of load application for all IX < n12. Ac
cording to (64H66), the membrane forces are of 0(1), the moments of O{log r) and the
transverse shearing forces of O{r- 1

) near the origin. The orders imply that, similarly to the
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previous case, the force Pz is transferred into the shell primarily through bending action.
The far-field response also resembles Case I. As seen from (69), (71) and (72), the membrane
forces are of O(r- 1), moments of O(r- z) and transverse shearing forces of O(r- 3

).

The fact that the membrane forces remain bounded at the load point in Cases I and II
can be explained physically. For simplicity consider ex = 45° and a concentrated force that
lies in the plane of one of the plates. Suppose that the two plates are disconnected and the
force acts on them individually. The plate which the force loads in extension has displace
ments at the edge that are of O(log r) for r ~ O. In contrast, the plate which the force loads
in bending suffers a deflection that is bounded and has bounded first derivatives for r -> 0
[13]. If the plates are loaded when they are connected, the extensional displacements can
not be larger than the transverse deflection of the plate which was loaded in bending when
disconnected. Hence it can be concluded that the membrane forces must remain bounded
at the load point.

The distribution of some of the stress resultants for ex = 45° and v = 1/3 is shown in
Figs. 4 and 5.
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CASE Ill-LOAD ALONG RIDGE

(74)

(75)

If the force P3 is applied along the ridge of the prismatic shell, as illustrated in Fig. 1,
the deformations are symmetric about the center plane, and equations (27) hold. Sub
stituting (27) into the boundary conditions (6H13) reduces these expressions to the
following:

Ux sin r:J. - w cos r:J. = 0,

ow
ox = 0,

N xy = -tp3b(y),

Nxx cos r:J.+ v" sin r:J. = 0.

The Fourier exponential transform leads in the present case to the divergent integral
f~t-2e-xtsinytdt. Proceeding as in Case I, this integral may be replaced with the har
monic function - [y(log r - 1)+x8] which arises in considering the limits, as e -4 0, of the
derivatives of

L2(x,y;e) = {Xl t- 2e- xt sinytdt,

where x > 0, - a) < Y < a) and e > 0. The displacement potentials and the deflection
function for Case III are

where

P3
cP(x, y) = 4nh [28 - (1- v)S 1(x, y; a)],

I/!(x,y) = n(::v)[Y(lOgr-l)+x8+HI-V)2So(x,y;a)],

P3(1- v) sin r:J. 2
w(x,y) = 4 (1 )Gh [8-S 1(x,y;a)+a xSo(x,y;a)],

n +v cosr:J.

(76)

(77)

(78)

(0 < r:J. < nI2). (79)

The extensional displacements and membrane forces derived from (76) and (77) are

2Gux = 4 P3 h {2(I-V)8+(1 +V)2
X

; +(I-v)[(1 +v)a2XS o-2S 1]} ,
n(1 + v) r

(80)

2Guy = - 4n(:: v)h {410g r +(1 + V)2:~ +(1- v)[(l + v)a2xCo+(1- v)C I]} ;
N xx = :::h[(1-V)~-2(l +V)x

r
! -a2(I-v)(So+xSdl

N xy = :::h[ -(3+V)~+2(I+V)::+(I-v)a2xCl1 (81)

P3 [ y x
2
y 2 ]N yy = 4nh -(3+v)r2+2(I+V)7-a (l-v)(So-xSd ,
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where - nl2 :-s;; 0 :-s;; n12. The Airy stress function corresponding to the membrane forces is

(82)

Finally, the bending moments and transverse shearing forces can be expressed as

P3(1 - v) cos rx[ xy 2 ]M xx = . -(1-v)2+(1-v)a xSo+(l +V)SI ,
8n sm rx r

_ P3(1-v)2 cos rx[_ x 2
2 C ]

Mxy - 8' 2 +a x 0 ,n sm Q( r

_ P3(1-v) cos rx[_L 2 ]
Qx - 4 h . 2 +a So 'n sm rx r

THE NEAR AND FAR FIELDS FOR CASE III

The membrane forces for r --> °are

P [ X x
3

]N~y = ~h -(3+v)2"+2(1+v)4 +O(rlogr),
4n r r

P [ Y x
2y

]N~y = _3 -(3+V)2"+2(1+V)-4 +O(r log r).
4nh r r

(83)

(84)

(85)

The dominant parts of the membrane forces can be derived from the Airy stress function

o P3h
X =-[(1-v)ylogr+2xO].

4n
(86)

It may be noted that this is the Airy stress function for the elastic whole plane subjected to
a concentrated force. This result holds for all angles °< rx :-s;; n12. It can be shown, how
ever, that as rx --> 0, (81) reduce to the results for an elastic half plane which is loaded by
the tangential force ~P3' Consequently, the membrane forces undergo a discontinuous
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change at a = O. The bending stress resultants in the near field are

° P3(1- v) cos a[ XY]M xx = 8' (1+v)8-(1-v)2 +O(r),
n sm a r

M O __ P3(1-V)2 cos a x 2 (
xy - 8' 2 +0 r),n sm a r

° P3(1- v) cos a[ XY]M yy = 8' (l+v)8+(l-v)---T +O(r);
n sm a r

o P3(1- v) cos a Y
Qx = - 4 h . z+O(rlogr),

n sm a r

(87)

(88)
o P3(1-v)cosax (

Qy = 4nh sin a r2 + 0 1).

The dominant parts of (87) and (88) follow from the elementary deflection function

°__ P3(1 - v)h
2

cos a [2n 1 2 . 2nJw - D . r u + 2r sm u. (89)
16n sma

The membrane forces in the far field are

(90)

The dominant parts of (90) follow from the Airy stress function

(91)

which is the same as the stress function for a half plane that is loaded by the tangential
force -tP3 at the edge. Accordingly, the membrane forces in the far field are independent of
the elastic constants for all a < n12. The far-field bending moments and shearing forces are

(92)
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The dominant parts of (92) and (93) can be derived from the deflection function

P3h2 sin oc 1 .
WOO = 24 (1 )D (O+zsm 20).n +v cos ex

DISCUSSION OF RESULTS FOR CASE III

277

(93)

(94)

The asymptotic expansions of the near field (85), (87) and (88) show that the moments
are bounded, and the membrane and transverse shearing forces are O(r - 1) as r -+ O. These
orders reveal that the behavior is different from the previous cases, and that the load which
is applied along the ridge is transferred into the shell immediately through membrane
action. In contrast, the nature of the far field is the same as in the former cases: the mem
brane forces are of O(r - 1), the moments of O(r - 2) and the transverse shearing forces of
O(r - 3). A particularly interesting result is that, for all 0 < ex < n/2, the near- and far-field
membrane forces are independent of the opening angle oc. In fact, the near-field membrane
forces are the same as in an elastic whole plane or for the case of oc n/2. Furthermore, the
far-field membrane forces are identical with those existing in an elastic half plane that is
subjected to a tangential force tP3 at the boundary.

The distribution of N yy along the ridge and along a line perpendicular to the ridge is
shown in Fig. 6 for ex = 45° and v = -1.

5 ........---------,

4

oO~--2-:------L4--..J6

-y

----Nfj

ft... I

"---.
<>..'
'-

~~
.c::
~
I

I

0
0 2 4 6

-x

FIG. 6. Stress resultant N yy along the y-axis and along a line perpendicular to the ridge for Case III
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ERRATUM

Some errors were discovered in Figs. 2 and 3 displaying the distributions of the stress
resultants for Case I [12]. The correct results are shown in Fig. 7. It is seen that the far-field
values are actually better approximations than was indicated before.
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A6cTpaKT-Pa60Ta 06cylKAaeT OCTanbHble ABa cny'ial1 HeorpaHI1'ieHHbIX npl1]MaTI1'1eCKI1X 060nO'ieK,
nOABeplKeHHblx AellcTB1110 KOHLIeHTp"'1eCKllX YCl1nl1H Ha rpaHll. KorAa Harpy]Ka nepneHAI1KynllpHa K
nnOCKOCTll CIMMeTp"1 060nO'lKll, TorAa MeM6paHHbie yCHnHlI KOHe'lHbl, HO MOMeHTbl 11 nOnepe'lHbfe
cpa3blBalOll.\He CHnbl CllHrYJIlIpHbI B TO'lKe npllJIOlKeHHlI HarpY3KI1. B npOTHBononOlKHOCTH MeM6paHHbie
YCllJIHlI npe06JIaAalOT Ha 60JIbWOM paCCTollHHH OT MeCTa npHJIOlKeHHlI HarpY3KH. )l.nll cny'lall KOHLIeHT
pH'IeCKOrO yCHnl1l1, npHJIOlKeHHOro no HanpaBJIeHlllO rpaHll, MeM6paHHble 11 nOnepe'lHble cpa3bfBalOll.\lle
YCHJIHlI aHryJIllpHbl. OHH TaKlKe "Horo caMoro nopllAKa, B TO'lKe npHJIOlKeHHlI Harpy]KH. Ho, AJIlI )Toro
cny'lall MeM6paHHbie yCHJIHlI npe06JIaAalOT B 06naCTlIX OTAaJIeHHblX OT TO'lKH HarpYlKeHllll.


