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TRANSMISSION OF CONCENTRATED FORCES
INTO PRISMATIC SHELLS—II

M. G. SAMUCHIN and J. DUNDURS

Department of Civil Engineering, Northwestern University, Evanston, Illinois

Abstract—The paper treats the remaining two cases of an unbounded prismatic shell subjected to concentrated
forces at the ridge. When the load is perpendicular to the plane of symmetry of the shell, the membrane forces
remain bounded, while the moments and transverse shearing forces are singular at the load point. In contrast,
the membrane forces dominate the far field. When the concentrated force is applied in the direction of the ridge,
the membrane and transverse shearing forces are singular and both are of the same order at the point of loading.
The far field for this case again is dominated by the membrane forces,

INTRODUCTION

TuEe formulation of an unbounded prismatic shell subjected to concentrated forces at the
ridge and the specific loading by a force which lies in the plane of symmetry and is
perpendicular to the ridge were discussed in a previous paper [12). The present article
treats the remaining two cases when the force is either perpendicular to the plane of sym-
metry or is applied along the ridge.

CASE II--ANTISYMMETRIC LOAD PERPENDICULAR TO RIDGE

1f the concentrated force P, applied at the ridge is perpendicular to the plane of sym-
metry of the shell, as shown in Fig. 1, the deformations are antisymmetric with respect to
this plane, and

ugcl)(xl Ed yl) = ”u.(rZ)(x29 yZ) = ux(x9 ,V),
uO(xy, y1) = —uP(x,, ;) = ux, y), (53)
wlxg, y) = w(x,, p,) = wix, y).

Substitution of (53) into the boundary conditions (6){13) finds four equations satisfied
identically, while the remaining relations become

u,cosa+wsina = 0,
u, =0,
’ (54)
M, =0,
N, sinag~V, cosa = —3P,8(y).

The field quantities satisfying the differential equations (3} and (5) and the boundary
conditions (54) can be constructed in the same manner as for Case I. The Papkovich~
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(a) (b)

F1G6. 1. Unbounded prismatic shell, loads and coordinate systems.

Neuber displacement potentials and the bending deflection constituting the desired
solution are

Py(1+v) '
olx,y) = —m[logH—Cl(x,y, a)l, (55)
Yix, y) =0, (56)
P,(3—v)cos ;
wix, y) = sz[z logr+2C (x, y:a)—(1 —v)a*xCy(x, y: a)], (57)
where

48 tan?
a? = %";‘f 0 <o < 7/2). (58)

-V

The extensional displacements and membrane forces derived from (55) and (56) are

——= [B=v)(logr+C,)—(1+v)a*xC,],

=" xS, 5
2Gu, 4nhsina 0 &9)

P,a’
" 4ahsina
P,a?

No = = gmsin a0~ V80 H 1 +v)xS,], (60)

z
|

[2Co+ (1 +v)xC,],

Paa® (14 vxC,]

= — | &V had v .
» 47h sin o 0 !

The Airy stress function corresponding to the membrane forces (60) is

_ P,h
" drsina

[(1—vxlogr—2y0—2C,—(1+v)xC,] (61)
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Finally, the moments and transverse shearing forces follow from (57) as
2

Pyl-v) |x 5
== TBtvcosa\rr XCol.
_ P XV g2
My = 27:(3+v)cosc>t[(1_v)(rZ axSO)+(1+V)51:|, ©2
Y S ¥ e +2(1+)C, |;
w7 2a(3+v)cosa _v)r_zﬁax o TATENC 3
- P [x_
Oc = (3 + v)h cos oz(r2 4 CO)’
. , (63)
- "2 |7 _ ;2
0, = (3 +v)h c:osoc(r2 ¢ So)'

THE NEAR AND FAR FIELDS FOR CASE II
The stress resultants of the near and far fields are derived by substituting the asymptotic
forms of the auxiliary functions (21)t and (25) into (60), (62) and (63). Thus the following
results are obtained for the near field:
1 P,a

NO =_N0 .
ooy W 4h sin a+0(r logr). )
(64
Ngy = O(rlogr),
P,(1—v) x2
o _ "2 VT
= 2n(34+v)cosa r? +00),
MO - P2 (1= 224 (1+)0 | +0() (65)
xy 27(3+ v)cos « r? ’
Py(1+v)
o "2V 7 ;
M, = n(3+v)COSOClogr+0(1)’
P x
o __ 2 .
Qx n(3 4 v)h cos a 2t om,
. (66)
0 _ B Y
2 (34 v)h cos « ;21 Ol log)

The dominant parts of the moments and transverse shearing forces near the load point
are the same as the stress resultants derived from the elementary deflection function
0 P,

1+v )
. 21 - 21 20— . 29 b, '
" 4n(3+v)D cosa[r ogr—1_.7 (log r cos 6 sin )+1+vr } 67)

t The more explicit asymptotic forms of the auxiliary functions for r — 0 may be noted

Cylx, y) = n/2a+xlogr+O(r), C,(x,y) = —logr+0(1), 68)
Solx, y) = —ylogr+0(r), S1(x, y) = 0+ O(r).
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Apart from the multiplier 1/cos a, w° given by (67) is identical to the deflection function of
a semi-infinite plate loaded in bending by a concentrated force, which is applied at the

edge of the plate [13].
The membrane forces in the far field are
o _____Fz I ) , X_ -3
N& = dnh smoc_(1 t) +2(1+‘) 4]+O(r )
p, T y x%y _
N = —— =2 {1l —v)> 14— 3,
¥ dnhsin of ( X)r2+2( +v) rt j{«{«O(r ) 69)
N® = —— —PL— (1+3v) 2(1+v) X o 3).
¥ Anhsina| +

The Airy stress function which gives the dominant parts of the membrane forces in the
far field is

Pyh
47 sin o

X

X [(1—v)x logr—2y8]. (70)
It may be noted that the Airy stress function ¥ is proportional to that of the infinitely
extended plate which is loaded by an in-plane concentrated force. The bending stress
resultants in the far field follow as

o Py(1—v) x* x4 e
M= ‘m(37-47€ o,
2P x3y _
M = ~na2(3+:)cosa[ 7+2(1 ) ]+O( % n
- P, L x? x* 4y
Myy == ms“&[( +V) +(1 '”5\1)7-—4(1 —V)';g ‘f‘O(I‘ IR
2P, x X _
T2 3% 4% opd),
o na*(3+ v)h cos rx( r# ré) +0™)
Y ma®3+vhcosalrt  r® T

The dominant parts of the bending stress resultants given by (71) and (72) can be derived
from the elementary deflection function
P,(3—v)h? cosa

aa ___L .
wo o= 487(1 —v)D sin® a[logr {1 —v)cos 20]. {(73)

DISCUSSION OF RESULTS FOR CASE 11

The asymptotic forms of the near field indicate the same behavior as for Case I, in that
the membrane forces are bounded at the point of load application for all a < /2. Ac-
cording to (64)-(66), the membrane forces are of O(1), the moments of O(logr) and the
transverse shearing forces of O(r ') near the origin. The orders imply that, similarly to the
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previous case, the force P, is transferred into the shell primarily through bending action.
The far-field response also resembles Case 1. As seen from (69), (71) and (72), the membrane
forces are of O(r '), moments of O(r~2) and transverse shearing forces of O(r~3).

The fact that the membrane forces remain bounded at the load point in Cases I and 11
can be explained physically. For simplicity consider a = 45° and a concentrated force that
lies in the plane of one of the plates. Suppose that the two plates are disconnected and the
force acts on them individually. The plate which the force loads in extension has displace-
ments at the edge that are of O(log r) for r — 0. In contrast, the plate which the force loads
in bending suffers a deflection that is bounded and has bounded first derivatives for r — 0
[13]. If the plates are loaded when they are connected, the extensional displacements can-
not be larger than the transverse deflection of the plate which was loaded in bending when
disconnected. Hence it can be concluded that the membrane forces must remain bounded
at the load point.

The distribution of some of the stress resultants for « = 45° and v = 1/3 is shown in
Figs. 4 and 5.
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FIG. 4. Stress resultants N, ., M,_and @, along the x-axis for Case II with « = 45° and v = §.
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F1G. 5. Stress resultants N, and M, along a line parallel to the ridge for Case II with ¢ = 45°
andv = 1.



274 M. G. SamucHIN and J. DUNDURS

CASE IH—LOAD ALONG RIDGE

If the force P; is applied along the ridge of the prismatic shell, as illustrated in Fig. 1,
the deformations are symmetric about the center plane, and equations (27) hold. Sub-
stituting (27) into the boundary conditions (6)«(13) reduces these expressions to the
following:

u, sin o —wcos o = 0,
ow

7 =0 (74)

ny - %Psé(,V),

N cosa+V, sing = 0.

The Fourier exponential transform leads in the present case to the divergent integral

o t~2e % sin ytdt. Proceeding as in Case I, this integral may be replaced with the har-
monic function —[y(log r — 1)+ x6] which arises in considering the limits, as ¢ — 0, of the
derivatives of

s_z(x,y;s)=f t"2e ™ sin yt dt, (75)

where x > 0, —o0 < y < oo and ¢ > 0. The displacement potentials and the deflection
function for Case III are

P
P(x, y) = I7;_h[20 —(1=v)Sy(x, y; a)], (76)
Py
Yix, y) = i+ )[y(logr—1)+x9+4(1—v)2 olx, y; a)l, (77)
Py(1—)si
W) = o [0, v, i)+ axSolx, )
where
a* = 3(1—vYcot?a, (0 <o <m/f2). (79)

The extensional displacements and membrane forces derived from (76) and (77) are

26Gu, = 4—%{2(1 V)9+(1+v)2 2+(1——v)[(1+v)a xSO—2SI]}

(80)
P 2%
2Guy m{‘" logr+(1+v) 2-+-(1—v)[(1+v)a xC +(1—V)C ]}
P x?
N, = Zi‘}; (1—v);yi—Z(l-+—v)r—4y—a2(1—v)(SO+xSl)}

P3 [~ X x3 2

o = Zﬁ__(””)ﬁ“(l”)ﬁ“l"”“ xcl], (81)
Pl y x%y

by = 4_7:—h~—(3+v)r—2+2(1+v)r—4—a2(1—v)(So—xSI)],
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where —7/2 < 6 < n/2. The Airy stress function corresponding to the membrane forces is
Psh
x= i[2x9—(1—v)($o+x51)]. (82)

Finally, the bending moments and transverse shearing forces can be expressed as

M, = M[—a ) (1 =v)a?xSo +(1 +v)S,:|,
8nsina r
M,, = f%{%?ﬁ[—:—:+a2xco], 83)
M,, = B%Eggﬁ;(l—v)’:—zy—_a—v)azxso+(1+v)sl};
o P )
e

THE NEAR AND FAR FIELDS FOR CASE III

The membrane forces for r — 0 are
2

I y X"y
o _ ﬁ’(l—v)ﬁ—2(1+v)r—4j| +0(r log ),
NO — Py [ 3 )£+2(1+ )x—3 +0(rlogr) (85)
o T gl Ot A o
NO =£-_(3+v)l+2(1+v)x—2y +0(r log r)
YW 4nh| r rt BT

The dominant parts of the membrane forces can be derived from the Airy stress function
Psh
P ﬁ[u —v)y log r+2x6]. (86)

It may be noted that this is the Airy stress function for the elastic whole plane subjected to
a concentrated force. This result holds for all angles 0 < o < 7/2. It can be shown, how-
ever, that as o« — 0, (81) reduce to the results for an elastic half plane which is loaded by
the tangential force 1P,. Consequently, the membrane forces undergo a discontinuous
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change at « = 0. The bending stress resultants in the near field are

P5s(1 —v)cosa xy
o _ "3 — (1 -\ =
M, = - l:(1+v)9 (1—-v) r2]+0(r),
Py(1—v)? cos a x?
MO = —
v Brsing  r? +0, ®7)
Pyl —v)cosa xy
0o _ 3 w7 .
M), ~ fmong l:(l +v)0+(1~v) rZJ +0(r);
Py(l—v)cosa y
o_ -3 A
0 dnhsina 12 Olr log ) ,
Pl —y) (88)
o _ Ps(l—v)cosa x
Q= 4mhsina  r2 o)
The dominant parts of (87) and (88) follow from the elementary deflection function
P,(1—v)h? cos « )
o_ _I3 2 1.2
~l6Dsna [r*8+3r” sin 20]. (89)
The membrane forces in the far field are
B Py x2y _3
N = —pa+t00)
" Pyfx x? 3
N3 = —E(;‘F) +0(r™°), (90)
0 P3 y xzy —
Nyy = —%(r—z—r—‘t +O(r 3)
The dominant parts of (90) follow from the Airy stress function
P:h
© =2 xp, ©1)
2n

which is the same as the stress function for a half plane that is loaded by the tangential
force 3P; at the edge. Accordingly, the membrane forces in the far field are independent of
the elastic constants for all « < n/2. The far-field bending moments and shearing forces are

Pysina Xy x3y ~
Y G L R o2 N TPV ol P YRR
** 6m(1+v)cos oz|:r4 (1=v) ré +00™),
Py(1-v)sina | x*  x* _
w  “3CTHSRE R 4t 4
¥ 12n(1+v)cos a( rt ot +0™), ©2)

P, sin « Xy xy _
L L B 2 AN, YO B Sl ) P, YL
» 6n(1+v)cosa[vr4+( ) ré +0r™);
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P;sina y  x%y s
B |4+ 0O ,
0s 6n(1 +v)h cos czc(r4 ré +00™) 3
P, sin x x3 ~
R -2} 3 =4 — 5 X
& 6m(1 4+ v)h cos a( 3 ré r6) +0r™)
The dominant parts of (92) and (93) can be derived from the deflection function
P3h% sin « .
v _ 2 (941 .
2am(1 +v)D cos cx( +% sin 26) 94)

DISCUSSION OF RESULTS FOR CASE HI

The asymptotic expansions of the near field (85), (87) and (88) show that the moments
are bounded, and the membrane and transverse shearing forces are O(r ~ ') as r — 0. These
orders reveal that the behavior is different from the previous cases, and that the load which
is applied along the ridge is transferred into the shell immediately through membrane
action. In contrast, the nature of the far field is the same as in the former cases: the mem-
brane forces are of O(r '), the moments of O(r~2) and the transverse shearing forces of
O(r3). A particularly interesting result is that, for all 0 < a < #/2, the near- and far-field
membrane forces are independent of the opening angle «. In fact, the near-field membrane
forces are the same as in an elastic whole plane or for the case of « = n/2. Furthermore, the
far-field membrane forces are identical with those existing in an elastic half plane that is
subjected to a tangential force $P, at the boundary.

The distribution of N, along the ridge and along a line perpendicular to the ridge is
shown in Fig. 6 for « = 45° and v = 1.

—~I10hNyy (O, y) 7 Py
—==I0hNyy (x,¢) /Py

F1G. 6. Stress resultant N, along the y-axis and along a line perpendicular to the ridge for Case I
witha = 45° and v = .
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FI1G. 7. Stress resultant N, along the x-axis and along a line parallel to the ridge for Case I with
=45 andv = §.

ERRATUM

Some errors were discovered in Figs. 2 and 3 displaying the distributions of the stress
resultants for Case I [12]. The correct results are shown in Fig. 7. It is seen that the far-field
values are actually better approximations than was indicated before.
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AGcTpakT—Pabota 06CyXkiaaeT ocTanbHble OBa CAy4ad HEOTPAHH4EHHBLIX TPUIMATHHYECKHX 000s04YEK,
NMOABEPXEHHBIX aeliCTBHIO KOHLIEHTPHYECKUX ycuauil Ha rpaHu. Korma Harpyska neprneHankyaspHa K
MJIOCKOCTH CMMMETPHH OBOJIOYKM, TOrJa MemOpaHHbIE YCHJIMS KOHEYHBI, HO MOMEHTHI W TONEPEUHbBIE
Cpa3bIBaoOILMe CHIIbI CHHTYJISADHBL B TOYKE NPUIIOKEHHUs HATPY3KH. B MPOTHBOMONOXHOCTH MeMOpaHHbie
yCUIMA TIpeobsafaroT Ha GONBUIOM PACCTOSHMU OT MECTa NMPUAOXKEHHS Harpy3ku. [ cny4yas KOHUEHT-
PHYECKOTO YCHJIMSA, NMPUJIOXKEHHOrO 10 HAIPABJIEHHIO IpaHu, MeMOpaHHBIE M MONEpPeYHbIe CPa3blBaIOLLIHE
YCHIIUS aurysipHbl. OHH TaKXe TOTO CAMOIO MOpPAAKa, B TO4YKE MPUNOXKEHUs Harpy3ku. Ho, ans storo
cnyvyas MemOpaHHbIe YCHIIHA npeobnanaioT B 00/1aCTAX OTAANECHHBIX OT TOYKH HArpyXeHUs.



